skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wright, S_Joseph"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Examining the cues and drivers influencing seed production is crucial to better understand forest resilience to climate change. We explored the effects of five climatic variables on seed production over 22 years in an everwet Amazonian forest, by separating direct effects of these variables from indirect effects mediated through flower production. We observed a decline in seed production over the study period, which was primarily explained by direct effects of rising nighttime temperatures and declining average vapour pressure deficits. Higher daytime temperatures were positively related to seed output, mainly through a flower‐mediated effect, while rainfall effects on seed production were more nuanced, showing either positive or negative relationships depending on the seasonal timing of rains. If these trends continue, they are likely to lead to significant changes in forest dynamics, potentially impacting both forest structure and species composition. 
    more » « less
  2. Abstract Predicting tropical tree demography is a key challenge in understanding the future dynamics of tropical forests. Although demographic processes are known to be regulated by leaf trait diversity, only the effect of inter‐specific trait variation has been evaluated, and it remains unclear as to what degree the intra‐specific trait plasticity across light gradients (hereafter light plasticity) regulates tree demography, and how this will further shape long‐term community and ecosystem dynamics. By combining in situ trait measurements and forest census data with a terrestrial biosphere model, we evaluated the impact of observation‐constrained light plasticity on demography, forest structure, and biomass dynamics in a Panamanian tropical moist forest. Modeled leaf physiological traits vary across and within plant functional types (PFT), which represent the inter‐specific trait variation and the intra‐specific light plasticity, respectively. The simulation using three non‐plastic PFTs underestimated 20‐year average understory growth rates by 41%, leading to a biased forest size structure and leaf area profile, and a 44% underestimate in long‐term biomass. The simulation using three plastic PFTs generated accurate understory growth rates, resulting in a realistic forest structure and a smaller biomass underestimate of 15%. Expanding simulated trait diversity using 18 nonplastic PFTs similarly improved the prediction of demography and biomass. However, only the plasticity‐enabled model predicted realistic long‐term PFT composition and within‐canopy trait profiles. Our results highlight the distinct role of light plasticity in regulating forest dynamics that cannot be replaced by inter‐specific trait diversity. Accurately representing light plasticity is thus crucial for trait‐based prediction of tropical forest dynamics. 
    more » « less
  3. Abstract Growing evidence suggests that liana competition with trees is threatening the global carbon sink by slowing the recovery of forests following disturbance. A recent theory based on local and regional evidence further proposes that the competitive success of lianas over trees is driven by interactions between forest disturbance and climate. We present the first global assessment of liana–tree relative performance in response to forest disturbance and climate drivers. Using an unprecedented dataset, we analysed 651 vegetation samples representing 26,538 lianas and 82,802 trees from 556 unique locations worldwide, derived from 83 publications. Results show that lianas perform better relative to trees (increasing liana‐to‐tree ratio) when forests are disturbed, under warmer temperatures and lower precipitation and towards the tropical lowlands. We also found that lianas can be a critical factor hindering forest recovery in disturbed forests experiencing liana‐favourable climates, as chronosequence data show that high competitive success of lianas over trees can persist for decades following disturbances, especially when the annual mean temperature exceeds 27.8°C, precipitation is less than 1614 mm and climatic water deficit is more than 829 mm. These findings reveal that degraded tropical forests with environmental conditions favouring lianas are disproportionately more vulnerable to liana dominance and thus can potentially stall succession, with important implications for the global carbon sink, and hence should be the highest priority to consider for restoration management. 
    more » « less